Alexander Alexeev is an Assistant Professor in the George W. Woodruff School of Mechanical Engineering at the Georgia Institute of Technology. He obtained his Ph.D. degree in Mechanical Engineering in 2003 from the Technion - Israel Institute of Technology. He joined Georgia Tech in 2008 after finishing his postdoctoral studies at TU Darmstadt in Germany and at the University of Pittsburgh. He uses modeling and simulations to solve problems at the intersection of engineering, medicine, and biology. His research interests include mesoscale modeling of complex fluids, soft and active materials, interfacial phenomena, and microfluidics. http://cfms.gatech.edu/

Collaboration Areas: High performance computing, computational fluid dynamics, mesoscale and particle based computational methods

Qing (Cindy) Chang is an Assistant Professor in the Department of Mechanical Engineering at SUNY Stony Brook University. She is interested in advanced manufacturing modeling and real-time adaptive control of dynamic manufacturing systems. Her NSF Career project investigates collaborative sensing information processing, and an intelligent online control for battery manufacturing. She obtained her PhD at University of Michigan, and worked at General Motors R&D Center before joining the faculty at Stony Brook University. http://me.eng.sunysb.edu/~sms/

Collaboration Areas: Data-driven modeling, large-scale systems, real-time control and decision making, energy management
Zizhong (Jeffrey) Chen is an Assistant Professor of Computer Science at the University of California, Riverside. He received his Ph.D in computer science from the University of Tennessee, Knoxville under the supervision of Professor Jack Dongarra. He is interested in high performance computing, numerical algorithms and software, and large scale computer simulations. He has worked closely with Jack Dongarra for many years on a variety of high performance computing (HPC) projects including Sca/LAPACK, LAPACK for Clusters, Sparse Linear Algebra Libraries and Algorithms, and FT-MPI, and developed a strong expertise in designing highly scalable HPC software and using the start-of-the-art HPC platforms (e.g., Kraken, Stampede, and Jaguar/Titan). His research has been supported by National Science Foundation, Department of Energy, CMG Reservoir Simulation Foundation, Nvidia, and Microsoft Corporation. He received a Best Paper Award from the International Supercomputing Conference in 2004, an Outstanding Faculty Award from the Colorado School of Mines in 2010, and a CAREER Award from National Science Foundation in 2012. http://www.cs.ucr.edu/~chen/

Collaboration Areas: Biology, chemistry, earth sciences, economics and business, environmental sciences, mechanical engineering, medicine, physics, any other field that uses high performance computing knowledge

Robin Dowell is an Assistant professor in Molecular, Cellular, and Developmental Biology and Computer Science at the University of Colorado in Boulder. She is a member of the BioFrontiers Institute and the Linda Crnic Institute for Down Syndrome. She received her D.Sc. in Biomedical Engineering, a M.S. in Computer Science, a B.S. in Genetics, and a second B.S. in Computer Engineering. Robin’s research leverages computational and experimental approaches to better understand how common types of genomic variations impact transcriptional regulation. Our work focuses on comparing genome variations between individuals within a species to understand and predict their unique transcriptional response to perturbations. Our work centers around two distinct questions: understanding the impact of aneuploidy on adaptation and transcription; and dissecting how genomic variation within a population impacts transcriptional regulation and response. On the educational front, I am focused on developing educational initiatives that transcend disciplinary boundaries to provide hands-on research experiences. These efforts have resulted in a new graduate program (IQ Biology), a campus undergraduate iGEM team, and new approaches to the teaching of responsible conduct of research (RCR).

Collaboration Areas: Visualization, large scale datasets on transcription, responsible conduct of research training and education
Adrian Feiguin joined Northeastern University as Assistant Professor in 2012, after spending 3 years as Assistant Professor at the University of Wyoming. His field of expertise is computational condensed matter, focusing on theoretical and computational aspects of low dimensional strongly interacting quantum systems. This physics is realized under extreme conditions, such as very low temperatures, high pressure, or high magnetic fields, and low spatial dimensions, and it is mostly governed by the collective behavior of the electrons inside a solid. http://www.northeastern.edu/afeiguin/

Collaboration Areas: Quantum information, quantum chemistry

Sophya Garashchuk is an associate professor of physical and theoretical chemistry at the University of South Carolina. She received the NSF CAREER award in 2011. The goal of Sophya's research is to understand the role of quantum-mechanical effects of nuclear motion in reactive systems in condensed phase, to which end an approximate quantum trajectory dynamics method is being developed in her group. For generality and scalability to molecular systems of a few hundred atoms, implementation of the quantum trajectory dynamics is based on semi-empirical electronic structure calculations and 'mean-field' approximations to the quantum force. http://www.chem.sc.edu/people/facultyStaffDetails.asp?SID=83

Collaboration Areas: Interested in collaboration with computer scientists to implement electronic structure calculations on-the-fly practical for thousands of electrons using CPU/GPU and, more generally, in the area of the Materials Genome Initiative.

Thomas Hacker is an Associate Professor of Computer and Information Technology at Purdue University and Visiting Professor in the Department of Electrical Engineering and Computer Science at the University of Stavanger in Norway. Dr. Hacker’s research interests center around high- performance computing and networking on the operating system and middleware layers. Recently his research has focused on cloud computing, cyberinfrastructure, scientific workflows, and data-oriented infrastructure. Dr. Hacker is also co-leader for Information Technology for the Network for Earthquake Engineering Simulation (NEES), which brings together researchers from fourteen universities across the country to share innovations in earthquake research and engineering. http://www2.tech.purdue.edu/cpt/SelfStudy/CPTFacultyVitas/FacultyStaff/DisplayStaffMember.asp?member=tjhacke

Collaboration Areas: Reliability, high performance computing
Samer Hani Hamdar is an assistant professor at the George Washington University (GWU) where he is the director of the Traffic and Networks Research Laboratory (TNRL). Dr. Hamdar is an affiliate faculty member at the GWU Center for Intelligent System Research (CISR) and the National Crash Analysis Center (NCAC). He holds a BE Degree from the American University of Beirut, a MS Degree from the University of Maryland, College Park and a PhD Degree from the Northwestern University – all in Civil and Environmental Engineering. Dr. Hamdar worked on different projects covering different transportation areas. These projects include two recent National Science Foundation (NSF) Projects titled “Collaborative Research: New Methods for Measuring, Evaluating and Predicting the Safety Impact of Road Infrastructure Systems on Driver Behavior; and “CAREER: Collision Prediction and Vehicle Control Using an Episode-Based Modeling Framework”. His primary research interests include Driver Behavior Modeling, Traffic Flow Theory, Intelligent Transportation Systems, Pedestrian Behavior Modeling, Transportation Safety, Evacuation Modeling and Disaster Management. He has an international research background having participated in projects in Germany, Saudi Arabia and the USA. He is a member of the Transportation Research Board (TRB) Traffic Flow Theory and Characteristics Committee (AHB45) and the Task Force on Emergency Evacuations (ANB80T).

http://hamdar.seas.gwu.edu

Collaboration Areas: Communication and infrastructure (electricity and roadway) network vulnerabilities during extreme conditions (external natural and man-made hazards). Security and resiliency of vehicle to vehicle and vehicle to infrastructure communication for an efficient (safe and reliable) autonomous driving.

Hamed Hatami-Marbini is an Assistant Professor in the School of Mechanical and Aerospace Engineering at Oklahoma State University. He received his PhD in Mechanical Engineering from Rensselaer Polytechnic Institute in 2009 and was a postdoctoral fellow at Stanford University from 2009 to 2011. His research interests are Solid Mechanics and Multiscale Computational Analysis of Materials, Micro and Nano Mechanics of Materials, Biomechanics and Biomaterials, Mechanics of Natural Composite Materials, and Mechanics of Random Media. http://www.mae.okstate.edu/node/107

Collaboration Areas: Experimental validation studies for computational models, design of (bio-inspired) materials based on numerical simulations, multiscale modelling, parallel programming, and biomechanics.
Shantenu is an Assistant Professor in ECE at Rutgers University. Before moving to Rutgers, he was the lead for Cyberinfrastructure Research and Development at the CCT at Louisiana State University. His research interests lie at the triple point of Cyberinfrastructure R&D, “theoretical” Applied Computing and Computational Science. Building upon his background in computing and biomolecular sciences, he hopes to play a part in the upcoming revolution at the interface of computing and health-science — global health and “personalized” medicine. Shantenu is the PI of RADICAL (http://radical.rutgers.edu) and RADICAL-Cybertools (http://radical-cybertools.github.com) which are a suite of standards-driven and abstractions-based tools used to support large-scale science and engineering applications, including on most major Production Distributed Cyberinfrastructure -- such as US NSF's XSEDE and the European Grid Infrastructure. In addition he is designing MIDAS: Middleware for Data-intensive Analytics and Science. Away from work, Jha tries middle-distance running and biking, tends to indulge in random musings as an economics-junky (e.g., is currently musing on the lessons that the architects of the the global financial system can learn from the architecture of global distributed computing systems), and tries to use his copious amounts of free time with a conscience.

Collaboration Areas: Climate and polar Science, biomedical and biomolecular science

Kapil Khandelwal is an Assistant Professor in the Department of Civil & Environmental & Earth Sciences at the University of Notre Dame. He received BS in Civil Engineering from IIT-Roorkee (India), MS in Structural Engineering From IIT-Delhi (India) and Ph.D. in Civil Engineering from the University of Michigan, Ann Arbor. His research interested includes: computational solid mechanics (FEM), gradient elasticity/plasticity, computational fracture mechanics, topology optimization, and progressive collapse of structural systems. http://ceees.nd.edu/profiles/kkhandelwal

Collaboration Areas: Multiscale mechanics, large scale optimization, GPU/parallel algorithms and optimization, uncertainty quantification.
Emmanouil (Manos) Kioupakis is an Assistant Professor of Materials Science and Engineering at the University of Michigan, Ann Arbor, MI. He received his undergraduate degree in Physics from the University of Crete, Greece, in 2001 and the Ph.D. degree in Physics from the University of California, Berkeley, CA, in 2008, under the direction of Prof. Steven G. Louie. From 2008 to 2011 he was a Postdoctoral Scholar at the University of California, Santa Barbara under the direction of Prof. Chris G. Van de Walle. His research interests include first-principles computational studies of quantum processes in electronic materials. He received the NSF CAREER Award in 2013 and the Jon R. and Beverly S. Holt Award for Excellence in Teaching in 2014. http://www-personal.umich.edu/~kioup/UM/Welcome.html

Collaboration Areas: Materials theory, condensed matter theory, electronic structure calculations

Haibin Ling is an assistant professor of computer and information sciences at Temple University. He got his B.S. in mathematics and MS in computer science from Peking University, and his PhD in computer science from University of Maryland, College Park. Before joining Temple, he also spend one year at University of California Los Angeles as a postdoc. He had worked for Microsoft Research Asia and Siemens Corporate Research as well. Dr. Ling's research interests include computer vision, medical image analysis, human computer interaction, and machine learning. He received the Best Student Paper Award at the ACM Symposium on User Interface Software and Technology (UIST) in 2003, and the NSF CAREER Award in 2014. He has served as an Area Chair of CVPR 2014 and as a Guest Co-Editor for the Pattern Recognition Special Issue on Discriminative Feature Learning from Big Data for Visual Recognition. http://www.dabi.temple.edu/~hbling/

Collaboration Areas: Computer vision, including visual recognition, visual surveillance, visual summarization, etc. Biomedical image analysis, including anatomic structure detection and segmentation, image-guided diagnosis. Privacy protection, especially visual privacy protection
Laurence Loewe is an Assistant Professor at the University of Wisconsin-Madison. He investigates questions in the new field of evolutionary systems biology, which merges systems biology and population genetics. To enable this, his group is developing two major tools. The first, Evolvix, is a new programming language that makes it easy for biologists to describe the systems they study in mathematically rigorous form and link them to real data. The second, Evolution@home, is a globally distributed computing system that is being redesigned for analyzing the flood of simulation data generated by Evolvix models. His group works ‘in silico’ on diverse topics like circadian clocks, antibiotic resistance evolution, the population genetics of harmful mutations and species extinction. He is interested in bridging the gap between simple analytically understandable mathematical models and biological reality by building rigorous simulation models to answer various evolutionary questions. http://evolution.ws/people/loewe http://evolvix.org

Collaboration Areas: I look for advice on the best possible choices of hash-functions for various purposes to enable the general data structures needed for Evolvix development. I welcome potential collaborators with cutting edge simulation engines worth integrating into Evolvix by developing language elements that make it easy to drive these simulation engines by building interesting biological models for them.

Kamesh Madduri is an assistant professor in the Computer Science and Engineering department at The Pennsylvania State University. He received his PhD in Computer Science from Georgia Institute of Technology’s College of Computing in 2008, and was previously a Luis W. Alvarez postdoctoral fellow at Lawrence Berkeley National Laboratory. His research interests include high-performance computing, parallel graph algorithms, and massive scientific data analysis. He is a recipient of the NSF CAREER award (2013), a co-recipient of the best paper award at the 42nd International Conference on Parallel Processing (2013), and was awarded the first Junior Scientist prize from the SIAM Activity group on Supercomputing (2010). He is a member of IEEE, ACM, and SIAM. http://www.cse.psu.edu/~madduri/

Collaboration Areas: graph analytics and its applications in bioinformatics, intelligence, online social data analysis, scientific computing; HPC education for non-CS students; complementary expertise to target NSF's BIGDATA, XPS, CDS&E solicitations
Jason P. McCormick is an Assistant Professor in the Department of Civil and Environmental Engineering at the University of Michigan. Dr. McCormick’s primary interests are in the areas of extreme load mitigation, structural response reduction through innovative passive control systems, and the performance of steel structures and components under seismic loads. This work includes characterizing and optimizing the properties of non-traditional civil engineering materials through experiments at multiple scales, the study of hollow structural sections through large-scale testing and high fidelity finite element models, and the evaluation of aging effects on the performance of steel bridge systems. He currently serves on the American Institute of Steel Construction (AISC) Task Committee 6 on Connections and the Subcommittee on Hollow Structural Section Connections. He is the recipient of the 2010 AISC Milek (Faculty) Fellowship, 2010 Chi Epsilon Great Lakes District “James M. Robbins” Excellence in Teaching Award and 2014 NSF CAREER Award. [Website]

Collaboration Areas: Finite element modeling including contact, crack propagation and weld behavior, mixed computational and experimental approaches, 3D visualization for research and teaching, educational research

Dr. Tim Mueller is an assistant professor at Johns Hopkins University. His primary area of research is the computational design and discovery of new materials, with a focus on materials for energy storage and conversion. To accurately predict the properties of materials his research group uses a variety of methods including ab-initio calculations and materials informatics. Prior to joining the faculty of Johns Hopkins he co-founded a battery company, Pellion Technologies, at which he managed a high-throughput computational search for advanced battery materials. He has a Ph.D. in Materials Science and Engineering from MIT and an A.B. in Applied Mathematics from Harvard University. [Website]

Collaboration Areas: Experimental synthesis and characterization of materials for electrochemical energy storage and conversion; Experimental synthesis and characterization of material surfaces
Christian D. Ott, Professor of Theoretical Astrophysics in the TAPIR group at Caltech, works on simulations stellar explosions and mergers of neutron star binaries. He received his Diploma in Physics from the University of Heidelberg in 2003 and his PhD from the Albert Einstein Institute and the University of Potsdam in 2007. He is also a member of the LIGO Scientific Collaboration that aims to make the first direct detection of gravitational waves within this decade. http://www.tapir.caltech.edu/~cott

Collaboration Areas: Massively-parallel computation in heterogeneous CPU+accelerator environments.

Dr. Judy Qiu is an assistant professor of Computer Science in the School of Informatics and Computing at Indiana University and an assistant director of the school’s Digital Science Center. Her research interests are parallel and distributed systems, cloud computing, and high-performance computing. Qiu leads the SALSA project, involving professional staff and Ph.D. students from the School of Informatics and Computing. SALSA focuses on data-intensive computing at the intersection of cloud and multicore technologies with an emphasis on scientific data analysis applications by using MapReduce and traditional parallel computing approaches. Her research has been funded by NSF, NIH, Microsoft, Google and Indiana University. She is a recipient of NSF CAREER Award in 2012 and Indiana University Trustees Award for Teaching Excellence in 2013-2014. http://www.cs.indiana.edu/~xqiu/

Collaboration Areas: Applications that need Big Data system support

Dr. Ioan Raicu is an assistant professor in the Department of Computer Science (CS) at Illinois Institute of Technology (IIT), as well as a guest research faculty in the Math and Computer Science Division (MCS) at Argonne National Laboratory (ANL). He is also the founder (2011) and director of the Data- Intensive Distributed Systems Laboratory (DataSys) at IIT. He has received the prestigious NSF CAREER award (2011 - 2015) for his innovative work on distributed file systems for exascale computing. He was a NSF/CRA Computation Innovation Fellow at Northwestern University in 2009 - 2010, and obtained his Ph.D. in Computer Science from University of Chicago under the guidance of Dr. Ian Foster in March 2009. He is a 3- year award winner of the GSRP Fellowship from NASA Ames Research Center. His research work and interests are in the general area of distributed systems. His work focuses on a relatively new paradigm of Many-Task Computing (MTC), which aims to bridge the gap between two predominant paradigms from distributed systems, High- Throughput Computing (HTC) and
High-Performance Computing (HPC). His work has focused on defining and exploring both the theory and practical aspects of realizing MTC across a wide range of large-scale distributed systems. He is particularly interested in resource management in large scale distributed systems with a focus on many-task computing, data intensive computing, cloud computing, grid computing, and many-core computing. Over the past decade, he has co-authored 86 peer reviewed articles, book chapters, books, theses, and dissertations, which received over 3250 citations, with a H-index of 22. His work has been funded by the NASA Ames Research Center, DOE Office of Advanced Scientific Computing Research, the NSF/CRA CIFellows program, and the NSF CAREER program. He has also founded and chaired several workshops, such as ACM Workshop on Many-Task Computing on Grids and Supercomputers (MTAGS), the IEEE Int. Workshop on Data-Intensive Computing in the Clouds (DataCloud), and the ACM Workshop on Scientific Cloud Computing (ScienceCloud). He is on the editorial board of the IEEE Transaction on Cloud Computing (TCC), the Springer Journal of Cloud Computing Advances, Systems and Applications (JoCCASA), as well as a guest editor for the IEEE Transactions on Parallel and Distributed Systems (TPDS), the Scientific Programming Journal (SPJ), and the Journal of Grid Computing (JoGC). He has been leadership roles in several high profile conferences, such as HPDC, CCGrid, Grid, eScience, and ICAC. He is a member of the IEEE and ACM. More information can be found at http://www.cs.iit.edu/~iraicu/, http://daisys.cs.iit.edu/, and http://www.linkedin.com/in/loianraicu. http://www.cs.iit.edu/~iraicu/

Collaboration Areas: Data-intensive computing applications (requiring either POSIX or NoSQL interfaces), communities interested in data provenance, large-scale workflow-based applications.

Christopher J. Rozell received a B.S.E. degree in Computer Engineering and a B.F.A. degree in Music (Performing Arts Technology) in 2000 from the University of Michigan. He attended graduate school at Rice University, receiving the M.S. and Ph.D. degrees in Electrical Engineering in 2002 and 2007, respectively. Following graduate school he joined the Redwood Center for Theoretical Neuroscience at the University of California, Berkeley as a postdoctoral scholar. In 2008 Dr. Rozell joined the faculty at the Georgia Institute of Technology where he is currently an Assistant Professor and holds the Demetrius T. Paris Junior Professorship in Electrical and Computer Engineering.

His research interests live at the intersection of signal processing, machine learning and computational neuroscience. Specifically, his lab uses tools from modern data analysis to improve our understanding of neural systems and insight from modern neuroscience to build more effective computational systems, with applications ranging from biotechnology to remote sensing. His research lab is affiliated with both the Center for Signal and Information Processing and the Laboratory for Neuroengineering. Dr. Rozell received the National Science Foundation CAREER Award in 2014, and previously was the recipient of the Texas Instruments Distinguished Graduate Fellowship at Rice University. In addition to his research activity, Dr. Rozell was awarded the CETL/BP Junior Faculty Teaching Excellence Award at Georgia Tech in 2013. http://users.ece.gatech.edu/~crozell/

Collaboration Areas: Application areas requiring data analysis.
Dr. Onkar Sahni is currently an Assistant Professor in the Department of Mechanical, Aerospace and Nuclear Engineering at Rensselaer. He joined Rensselaer in 2011, after working as research scientist/engineer at the Center for Predictive Engineering and Computational Science (PECOS) at the University of Texas-Austin. His research is focused on simulation-based predictive tools for coupled fluid flow problems involving turbulence and flow control. His research puts emphasis on adaptive and high-order methods, uncertainty quantification techniques and extreme-scale computing. http://www.scorec.rpi.edu/~sahni/
http://faculty.rpi.edu/node/1123

Collaboration Areas: Automatic differentiation, source transformation and embedding techniques, adaptive software for high-dimensional spaces, energy monitoring tools (for PDE assembly and linear solver codes)

Suzanne Shontz is an Assistant Professor in the Department of Mathematics and Statistics at Mississippi State University. She is also affiliated with the Center for Computational Sciences, the Department of Computer Science and Engineering, and the Graduate Program in Computational Engineering at Mississippi State. In August, she will join the Department of Electrical Engineering and Computer Science at The University of Kansas (KU) as an Associate Professor. At KU, she will also be affiliated with the Information and Telecommunication Technology Center and the Graduate Program in Bioengineering. Suzanne’s research is in parallel scientific computing and focuses on the development of meshing and numerical optimization algorithms and their applications to medicine, image processing, electronic circuits, acoustics, and materials. Suzanne is the recipient of a 2011 NSF PECASE Award from President Obama for her research in computational- and data-enabled science and engineering. She also received a 2011 NSF CAREER Award for her research on parallel dynamic meshing algorithms, software, and theory for simulation-assisted medical interventions. Along with Thomas Hacker of Purdue University, she is a Co-Chair of the 2012, 2013 and 2014 NSF CyberBridges Workshops. Suzanne chaired the 2010 International Meshing Roundtable, the premier conference in unstructured mesh generation, and has served on numerous program committees for international conferences in computational- and data-enabled science and engineering. She is also an Associate Editor of the De Gruyter Open Book Series in Medicine. http://sshontz.math.msstate.edu

Collaboration Areas: Applications involving dynamic meshing, scientific visualization, GPU computing
Linwei Wang is an Assistant Professor in the PhD Program of Computing and Information Sciences at the Rochester Institute of Technology in Rochester, NY. Her research interests center around data-driven modeling, statistical inference, and simulation-based optimization, with application to computational physiology and personalized biomedicine. She currently directs the Computational Biomedical Lab in RIT, with a recent research focus on personalized modeling of in-vivo cardiovascular systems using noninvasive biomedical data, and its application to improve patient care in cardiac arrhythmia and other heart diseases. Her NSF CAREER project investigates the integration of physics-based modeling into data-driven inference and learning methods. Dr. Wang obtained her bachelor degree in Optic-Electrical Engineering from Zhejiang University (China) in 2005, her master degree in Electronic and Computer Engineering from Hong Kong University of Science and Technology in 2007, and her PhD in Computing and Information Sciences from RIT prior to joining the faculty of RIT in 2009. http://phd.gccis.rit.edu/linweiwang/

Collaboration Areas: Multi-physics, multi-scale modeling and simulation, statistical inference & optimization, Machine learning, Signal and image analysis, high performance computing, scientific visualization

Dr. Jun Wang is an Associate Professor in Department of Electrical Engineering and Computer Science at the University of Central Florida, Orlando, FL, USA. He received his Ph.D. in Computer Science and Engineering from University of Cincinnati in 2002. He is the recipient of National Science Foundation Early Career Award 2009 and Department of Energy Early Career Principal Investigator Award 2005. He has authored over 80 publications in premier journals such as IEEE Transactions on Computers, IEEE Transactions on Parallel and Distributed Systems, and leading HPC and systems conferences such as HPDC, EuroSys, ICS, Middleware, FAST. He has conducted extensive research in the areas of Computer Systems and High Performance Computing. His specific research interests include massive storage and file System in local, distributed and parallel systems environment. His group has secured more than three million dollars federal research fundings in the last five years, including a 55-million NASA project. He has graduated 6 Ph.D. students who upon their graduations were employed by major US IT corporations (e.g., Google, Microsoft, etc). He currently serves on the editorial board for the IEEE Transactions on Parallel and Distributed Systems since 2012. He is chairing the 10th IEEE International Conference on Networking, Architecture, and Storage network, and has co-chaired the IEEE ScaleCom 2012, 1st International Workshop on Storage and I/O Virtualization, Performance, Energy, Evaluation and Dependability (SPEED 2008) held together with HPCA. http://eecs.ucf.edu/faculty_template/wang/index.php

Collaboration Areas: Big Data applications, data-intensive high performance computing
Thomas Wies is an Assistant Professor in the Computer Science Department of New York University. He holds a Masters degree in Computer Science from Saarland University, Germany (2005) and received his doctorate in Computer Science from the University of Freiburg, Germany in 2009. Before joining NYU in 2011, Dr. Wies held post-doctoral positions at École Polytechnique Fédérale de Lausanne, Switzerland and at the Institute of Science and Technology Austria. His research interests are in formal methods, verification, and programming languages. In particular, he is interested in the theory and development of tools that increase software productivity and assist software engineers in building reliable software. This includes tools for automated verification, automated error detection, and automated debugging.

http://cs.nyu.edu/wies

Collaboration Areas: programming languages, static and dynamic program analysis, automated debugging: fault localization, program repair, software verification and reliability, concurrency, automated reasoning.

Dr. Xiong (Bill) Yu is an associate professor at the Department of Civil Engineering, Case Western Reserve University. He also holds courtesy appointments in the Department of Electrical Engineering and Computer Science, the Department of Materials Science and Engineering, CWRU. Dr. Yu received his Ph.D. degree from Purdue University, B.S. and M.S. degrees from Tsinghua University, China. His research interest is in the broad area of civil engineering with emphasis on embracing innovative sensors and materials to improve sustainability and intelligence of the civil infrastructure system. He is the PI of over 20 research projects sponsored by various agencies and private industry with total value exceeding $3 million. Dr. Yu is a member of ASCE, ISSMGE, IEEE, ASME, SPIE, ASTM and TRB. He serves on SHRP and NCHRP project panels. He is a member of editorial board of three ASCE and ASTM journals. Dr. Yu is a recipient of the NSF CAREER award in 2009. He has published over 150 papers.

http://filer.case.edu/xxy21/Index.html

Collaboration Areas: Wireless network, system integration, data and algorithm, etc.