Preparing the Future Workforce for Careers in Science and Engineering

Steven I. Gordon
sgordon@osc.edu

XSEDE
Extreme Science and Engineering Discovery Environment
We are Failing to Meet National Needs

- Although the numbers have been rising recently, the number of undergraduate and graduate degrees in science and engineering are not meeting national needs.

Source: KEY SCIENCE AND ENGINEERING INDICATORS: 2010 DIGEST
Filling the Gap

- We are increasingly dependent on foreign born graduates to fill the gap especially at the graduate level.
Problems Attracting and Retaining Students

• Students switching to non-science majors
 – Over 90% indicated poor instruction among reasons for switching
 – 26% had trouble learning the basic concepts (Seymour and Hewitt, 1997)

• Engineering program at Wright State University improved the four-year graduation rate by 40% by introducing an applied mathematics course to precede the traditional calculus sequence

• Recent National Research Council report on undergraduate physics education recognized the importance of inquiry-based methods in retaining students by improving student’s conceptual understanding
Computation is Central to How Science is Done

- Computation lets us explore phenomena that are too big or complex to experiment, too small, or changes too fast or too slowly.
- Computation allows us to explore more options more quickly.
Computation is how science is done
Marketing Computational Science
Challenges to Changing How and What We Teach

• We tend to teach in the way we were taught
• Computational science is interdisciplinary
 – Faculty workloads fixed on disciplinary responsibilities
 – Coordination across departments is superficial
 – Expertise at universities is spotty
• Major time commitments are required to negotiate new programs and develop materials
• Curriculum requirements for related fields leave little room for new electives
• Change is hard
Pathways to Reform

• There are many ongoing efforts at instructional reform in the STEM fields
 – Disciplinary oriented changes in math and science instruction
 – Comprehensive curriculum revisions

• Focus here on the efforts by the XSEDE project to facilitate the integration of computational science into the curriculum
 – This includes approaches which utilize inquiry-based learning
XSEDE Vision

The eXtreme Science and Engineering Discovery Environment (XSEDE):

enhances the productivity of scientists and engineers by providing them with new and innovative capabilities

and thus

XSEDE accelerates open scientific discovery by enhancing the productivity of researchers, engineers, and scholars and making advanced digital resources easier to use.
Promoting Formal Academic Programs

• XSEDE Education program is focused on assisting with the initiation and enhancement of formal computational science and engineering programs
 – Both undergraduate and graduate programs
 – Most sustainable way to help achieve the long-term project goals by producing a savvy workforce
 – Reduce the barriers to program adoption by
 • Providing program models
 • Solidifying a virtual community to share experiences
 • Providing faculty professional development
XSEDE Education Program Services

• Campus Visits
• Assistance with program creation
• Workshops for faculty and students
• Repository of shared materials
• Other resources
Initiating Services to Facilitate Change

• Campus visits
 – First discussions about integrating computational science into the curriculum
 – Discussion of formal programs
 – Opportunities for faculty professional development
 – Overview of related XSEDE services
Creating Computational Science Programs

• Inherently interdisciplinary
 – Science, engineering, or social science domain
 – Mathematics
 – Computer science
• Expertise often dispersed across multiple departments, colleges, institutions
• Difficulty of negotiating requirements, responsibilities, and institutional arrangements
What Do Students Need to Know?

- Considerable discussion across many disciplines
- Difficulty working from general conceptual ideas to specific skills and knowledge
- Several efforts focused on a competency based model to arrive at consensus of the essential knowledge base
- Competencies reviewed by both academic and non-academic experts
- See http://hpcuniversity.org/educators/competencies/
Ohio Minor Program Example

- Undergraduate minor program
 - 6-8 courses
 - Varies based on major
- Faculty defined competencies for all students
- Reviewed by business advisory committee
- Program started in Autumn 2007
- Agreements to share students at distance, instructional modules, revenues, and teaching responsibilities

<table>
<thead>
<tr>
<th>Competencies for Undergraduate Minor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simulation and Modeling</td>
</tr>
<tr>
<td>Programming and Algorithms</td>
</tr>
<tr>
<td>Differential Equations and Discrete Dynamical Systems</td>
</tr>
<tr>
<td>Numerical Methods</td>
</tr>
<tr>
<td>Optimization</td>
</tr>
<tr>
<td>Parallel Programming</td>
</tr>
<tr>
<td>Scientific Visualization</td>
</tr>
<tr>
<td>One discipline specific course</td>
</tr>
<tr>
<td>Capstone Research/Internship Experience</td>
</tr>
<tr>
<td>Discipline Oriented Courses</td>
</tr>
</tbody>
</table>
Example Competencies Simulation and Modeling

• Explain the role of modeling in science and engineering
• Analyze modeling and simulation in computational science
• Create a conceptual model
• Examine various mathematical representations of functions
• Analyze issues in accuracy and precision
• Understand discrete and difference-based computer models
• Demonstrate computational programming utilizing a higher level language or modeling tool (e.g. Maple, MATLAB™, Mathematica, other)
• Assess computational models
• Build event-based models
• Complete a team-based, real-world model project
• Demonstrate technical communication skills
Explain the role of modeling in science and engineering

Descriptors:
Discuss the importance of modeling to science and engineering
Discuss the history and need for modeling
Discuss the cost effectiveness of modeling
Discuss the time-effect of modeling (e.g. the ability to predict the weather)
Define the terms associated with modeling to science and engineering
List questions that would check/validate model results
Describe future trends and issues in science and engineering
Identify specific industry related examples of modeling in engineering (e.g., Battelle; P&G, material science, manufacturing, bioscience, etc.)
Discuss application across various industries (e.g., economics, health, etc.)

Example exercise
Flexibility in Implementation

• Adapt existing courses by adding computationally oriented modules
• Discipline oriented courses dependent on existing faculty expertise and interests
• Different subsets of required and optional competencies tied to major, required math, and example projects
Graduate Level Competencies

• Assumes some of the background of an undergraduate
• Focus more on research skills
• Core areas focus on the computer science and related modeling skills
• Need to branch into a wider array of specializations based on the nature of the graduate program
Graduate Competencies

Specializations
- Discipline-Specific HPC Simulation
- HPC Application Development
- Data Intensive Computing

Core Area 1
- Intermediate Scientific Computing
- Physical Sciences and Engineering
- Computer Science

Core Area 2
- High Performance Scientific Computing

Subject Areas
- Life Sciences and Bioinformatics
Developing Faculty Expertise

• Faculty professional development workshops
 – Two to six day workshops on a variety of topics
 • Computational thinking
 • Computational science education in science and engineering domains
 – Focus on local/regional audiences to reduce travel costs
 – Subsidies for faculty to travel to workshops at other sites
Special Workshops for Faculty and Students

• Development of synchronous and asynchronous education and training sessions
 – Multi-site broadcasts of workshops
 – Online training and education modules
 – Experimenting with full courses that can be widely shared for credit and non-credit inclusion in curricula (e.g. https://www.xsede.org/xsede-offers-free-online-parallel-computing-course)
Repository of Shared Materials

• Developing a repository of computational science education materials
 – Reviewed by professional staff and faculty
 – Indexed by subject and a detailed competency-based ontology
 – Goal: trusted, comprehensive source of information for computational science educators
 – http://hpcuniversity.org/resources/search/
Some Other Opportunities

• Journal of Computational Science Education
 – www.jocse.org
 – Peer reviewed articles on computational science education experiences

• Become a reviewer or contributor to the online repository

• Use the XSEDE online materials
 – www.xsede.org
Questions

• What can be done to encourage our universities to support increased interdisciplinary instruction and coordination?

• What kinds of campus activities and services from projects like XSEDE would advance computational science education on your campus?

• What strategies might work best for integrating computational science into the curriculum in the face of limitations on total credit hours for a degree?

• Are there infrastructure barriers that inhibit the integration of computational modeling into instruction?

• How can we revise the instruction in large, introductory lecture classes to integrate inquiry-based learning?

• Are the computational science competencies for undergraduates presented at http://hpcuniversity.org/educators/competencies/ appropriate for students in your discipline?